
GridAI: Cloud-Based
Machine/Deep Learning For
Power Grid Data Analytics

sdmay21-23

Abir Mojumder Karthik Prakash

Justin Merkel Patrick Wenzel

Abhilash Tripathy

Team Members:Faculty Advisor & Client:

Dr. Gelli Ravikumar

Project Purpose

Problem Statement:

● Power grids are complex and critical infrastructure which leaves them
vulnerable to instability and attack.

Solution Approach:

● Develop a web application that implements a Machine Learning model to
analyze power grid data and detect anomalies in power usage.

Project Context
● Use Machine Learning on a

simulated power grid to provide
analytics and anomaly detection

○ Every node has some power output
data associated

○ Static electrical properties
○ Location and connections in

network

Project Functional Requirements

● Machine Learning Requirements. The ML models should:
○ Use the most recent kWh value from the grid in the predictions.
○ Predict the next kWh output for each node in the grid.
○ Predict the probability of each anomaly class.
○ Use convolutional layers for deep learning.

● Front-end Requirements. The front-end should:
○ Receive data from the back-end
○ Visualize data on a dashboard:

■ Graph-based visualization
■ Geographical representation of the power grid
■ Charts for each node’s history and predictions
■ Tabular data showing anomaly status for every node

○ Interface directly with the back-end

● Back-end Requirements The back-end should:
○ The server-side application will handle all data communication with the databases
○ All data processing, including ML analysis, will occur on the back-end
○ Provide real-time data to front-end

Project Non-Functional Requirements

● Clear documentation
○ Allows future teams to improve on the baseline

● Maintainability
○ Modular coding and Docker containers

● Scalability
○ ML models are generalized predictors for nodes.

● Response time
○ Lightweight front-end to accommodate response rate of work heavy

back-end

High Level Design

Front-end Design/Implementation

● Main Requirements:
○ Communicates with back-end
○ Accurate visualizations of data
○ Multiple kinds of visualizations
○ Clean-looking and easy to navigate

● One functional module
○ ReactJS frontend

Dashboard - Home Screen

React D3 Graph

● Nodes with Links
○ Use Rest API to get coordinates

and links between transformers
○ Plot and link nodes
○ Visualize 240-Node grid from

schematic.

● Interactive graph
○ Drag and zoom to adjust view
○ Click on nodes to display

information

Time-series data display and Comparison

● 24-hr History Data
○ Click a node to display past 24-hrs kWh readings
○ Predicted kWh value shown based on ML

prediction models

● Graph Settings
○ Compare Nodes option allows comparison of

time-series history of 2 selected nodes
○ Option to switch simulation update speed -

1 hour(realtime) or 10 seconds

Detailed Node Information

● Display Node Properties : Primary/Secondary voltage, Time running, Phase
type, Resistance, Reactance, etc. (Properties vary based on phase type)

Anomaly Data
● To view the predicted

status of the node.
● Display the confidence

level of the prediction in
a table format.

● View the nodes by their
Status “Normal”, “Spike”,
or “Failure.”

Back-end Design/Implementation

● Main Requirements:
○ Data processing
○ Supply real-time data

● Three functional modules
○ Neo4j database
○ MySQL database
○ REST API

Neo4j Database

● Graph-based database
○ Fast query response times
○ Practical power grid depiction

● Represent transformers in power
grid

○ Store transformer features for ML
○ Up-to-date kWh output properties

MySQL Database

● Developer-friendly
○ Previous experience with SQL
○ Well-documented
○ Simple integration with

server-side application

● Scalable
○ Preserve record of time-series

data
○ Future-proof for larger dataset

REST API

● Flask framework
○ Lightweight
○ Relatively easy learning curve

● Handle all data processing tasks
○ Provide access to necessary queries
○ Returns JSON formatted data
○ Implements ML models
○ Update Neo4j with time-series data

ML Design/Implementation

● Two key requirements
○ The ML models must predict the next kWh output for each node in the grid.
○ The ML models must predict the probability of each anomaly class.

● Two types of models
○ One that predicts a continuous value
○ One that classifies a datapoint

● Requires separate algorithms for each type.
● The unique aspects of the three transformer types require their own version of the

models

Linear Regression

● Linear Regression will output a continuous value
● Our implementation of Linear Regression

○ Multiple fully connected relu activated layers to add
non-linearity

○ MAE loss function over MSE loss in order to limit the
impact of outliers

■ Scalable and Generalized models (NFR)
● Feature Set

○ Static Transformer Data (Resistivities, Voltage Rating,
etc)

○ Timestamp (insights on power usage by month and
hour)

○ Previous Transformer in the line (Locality)
○ Previous and Current hour’s data (Power Trend Context)

Non-linearity
and context
features

Logistic Regression

● A continuous value does not tell us if there’s
an anomaly

● 3 classes of data
○ No Anomaly
○ Power Spike
○ Power Failure

● Softmax for K = 3
○

○ Returns 3 values summing to 1
○ Probabilities for each Anomaly Class

● Can use the same features

Neural Net layers
and softmax final
layer

Anomaly 1 =
Power Failure

[Normal, Power Failure, Power Spike]

Testing/Testing Results

● ML Models
○ The average deviation of the original data is 6.97 kWh.
○ With the DNN Linear Regression model, this is 1.25 kWh
○ Correctly Classifying 96% of the dataset with the Logistic Models

● Backend
○ Validated database queries manually
○ Verified functionality of endpoints with Postman
○ Identified bottleneck at startup due to database initialization

● Frontend
○ Manually tested every component of the UI
○ Null/undefined errors were common when data was not loaded correctly.
○ Use of asynchronous functions to resolve data loading issues before rendering.

Engineering Standards

● IEEE/ISO/IEC 12207-2017: Software life cycle processes
○ Requirements Definition
○ Architecture Definition
○ Design Definition
○ Implementation
○ Integration

Demo

https://docs.google.com/file/d/16pS2H_mpoW0nGHXegrMjh4_eiGT95WrZ/preview

The GridAI Team
Patrick Wenzel Karthik Prakash Justin Merkel

Abir Mojumder Abhilash Tripathy

